Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the mid-ninth century, an earthquake triggered a landslide that blocked the narrow gorge of the Jhelum River where it exits the Kashmir Valley. The landslide impounded a lake that extended ≈100 km along the floor of the valley, implying an impounded volume of ≤21 km 3 , flooding the capital, Srinagar, and much agricultural land. An engineered breach of the landslide was contrived by a Medieval engineer resulting in the catastrophic release of flood waters. Using reasonable assumptions we calculate the probable minimum drainage time of this Medieval flood (<4 days) and maximum downstream surge velocities (≈12 m/s). These would have been sufficient to transport boulders in the bed of the Jhelum with dimensions of ≈6 m, consistent with those currently present in some reaches of the river. Given the morphology of the Jhelum gorge we consider that landslide outburst floods may have been common in Kashmir’s history. Ancient shorelines indicate that paleo-lake volumes in the Kashmir Valley may have exceeded 400 km 3 which, were they released in catastrophic floods, would have been associated with potential downstream outburst velocities >32 m/s, able to transport boulders with dimensions ≈40 m, far in excess of any found in the course of the Jhelum or in the Punjab plains. Their absence suggests that Kashmir’s ancient lakes were not lowered by outburst mechanisms much exceeding those associated with Suyya’s flood. Present-day floods have been many tens of meters shallower than those impounded by landslides in the Jhelum in the past several thousands of years. A challenge for future study will be to date Kashmir’s ancient shorelines to learn how often landslides and major impoundment events may have occurred in the valley.more » « less
-
Abstract We report sequential triggered slip at 271–384 km distances on the San Andreas, Superstition Hills, and Imperial faults with an apparent travel-time speed of 2.2 ± 0.1 km/s, following the passage of surface waves from the 4 July 2019 (17:33:49 UTC) Mw 6.4 and 6 July 2019 (03:19:53 UTC) Mw 7.1 Ridgecrest earthquakes. Slip on remote faults was not triggered instantaneously but developed over several minutes, increasing in duration with distance. Maximum slip amplitudes varied from 10 μm to 5 mm within minutes of slip nucleation, but on the southernmost San Andreas fault slip continued for two months and was followed on 16 September 2019 by a swarm of microearthquakes (Mw≤3.8) near Bombay Beach. These observations add to a growing body of evidence that fault creep may result in delayed triggered seismicity. Displacements across surface faults in the southern epicentral region and on the Garlock fault in the months following the Ridgecrest earthquakes were negligible (<1.1 mm), and they are interpreted to characterize surface strain adjustments in the epicentral region, rather than to result from discrete slip on surface faults.more » « less
-
Abstract Observations of shallow fault creep reveal increasingly complex time‐dependent slip histories that include quasi‐steady creep and triggered as well as spontaneous accelerated slip events. Here we report a recent slow slip event on the southern San Andreas fault triggered by the 2017Mw8.2 Chiapas (Mexico) earthquake that occurred 3,000 km away. Geodetic and geologic observations indicate that surface slip on the order of 10 mm occurred on a 40‐km‐long section of the southern San Andreas fault between the Mecca Hills and Bombay Beach, starting minutes after the Chiapas earthquake and continuing for more than a year. Both the magnitude and the depth extent of creep vary along strike. We derive a high‐resolution map of surface displacements by combining Sentinel‐1 Interferometric Synthetic Aperture Radar acquisitions from different lines of sight. Interferometric Synthetic Aperture Radar‐derived displacements are in good agreement with the creepmeter data and field mapping of surface offsets. Inversions of surface displacement data using dislocation models indicate that the highest amplitudes of surface slip are associated with shallow (<1 km) transient slip. We performed 2‐D simulations of shallow creep on a strike‐slip fault obeying rate‐and‐state friction to constrain frictional properties of the top few kilometers of the upper crust that can produce the observed behavior.more » « less
An official website of the United States government
